I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore
Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).
Un concetto strettamente correlato al peso relativo e fondamentale in chimica per i calcoli quantitativi è quello di mole. La mole è una delle 7 grandezze fondamentali, definite nel Sistema Internazionale (SI) di unità di misura come quantità di sostanza: simbolo mol.
La mole è una quantità di una sostanza chimica numericamente uguale al suo peso relativo, espresso in grammi anziché in uma (più correttamente andrebbe espressa in kg, ma in chimica è più diffuso l’uso del grammo).
Esempio: calcoliamo quanto vale 1 mole di anidride carbonica CO2.
Il peso relativo della CO2 è , dunque 1 mole di CO2 è per definizione una quantità di anidride carbonica pari a 44g. |
Uno dei problemi pratici che più spesso si pongono nei calcoli chimici quantitativi è trasformare un determinata quantità di sostanza espressa in grammi (W), nel corrispondente numero di moli (n) o viceversa. Per far ciò è ovviamente necessario conoscere il peso di una mole o Peso molare.
Il Peso molare PM (più correttamente Massa Molare) è il peso (massa) di 1 mole e si misura in g mol-1 (più correttamente in kg mol-1).
Il Peso molare di una sostanza rappresenta quindi un fattore di conversione che permette di trasformare una quantità di sostanza espressa mediante il suo peso W, nell’equivalente numero di moli n e viceversa.
Infatti se consideriamo W grammi di una sostanza e vogliamo sapere a quante moli n corrispondono dobbiamo dividere W per il peso di una mole, cioè per il Peso molare.
Esempio: quante moli di acqua sono presenti in 27 mg di H2O Il peso relativo della H2O è ed il suo Peso molare 18 g/mol. In nimero di moli contenuto in 27 mg = 2,7 10-2 g di acqua sarà quindi pari a |
Viceversa se vogliamo calcolare quanti grammi pesa un determinato numero n moli di una sostanza, sarà sufficiente moltiplicare il numero n di moli per il peso di una mole, cioè per il Peso molare.
Esempio: calcoliamo quanto pesano 3,5 10-2 moli di anidride carbonica CO2. Il peso relativo della CO2 è ed il suo Peso molare 44 g/mol. Il peso di 3,5 10-2 moli sarà quindi pari a |
Si può facilmente verificare che 1 mole di una qualsiasi sostanza contiene sempre lo stesso numero di particelle costituenti (atomi, ioni, molecole etc). Per calcolare tale numero è sufficiente dividere il peso di una mole (Peso molare) per il peso di una particella (Peso molecolare assoluto).
Il Peso molare ed il Peso molecolare relativo sono per definizione numericamente uguali per qualsiasi sostanza. Il loro rapporto vale dunque sempre 1 ed il numero di particelle contenuto in una mole risulta essere il medesimo per ogni sostanza e numericamente pari al reciproco della massa in grammi dell’unità di massa atomica. Tale numero, indicato con NA, è conosciuto come numero di Avogadro.
(si noti che, se si esprime il peso molare in kg/mol, il fattore di conversione a denominatore vale 1,6605 10-27 kg/u ed il numero di particelle per mole risulta essere 1000 volte più elevato)
È allora possibile introdurre una definizione più generale di mole: una mole è una quantità di sostanza contenente un numero di Avogadro di entità costituenti, identiche e numerabili. Così è possibile ad esempio parlare di una mole di elettroni senza far riferimento al loro peso, ma al loro numero ed in definitiva alla loro carica complessiva e quindi ad una certa quantità di carica elettrica (il Faraday = 96.485,34 C).
Esempio: calcolare quante molecole sono contenute in un bicchier d’acqua avente la capacità di 0,135 litri. L’acqua presenta una densità di 1 kg dm-3 (1 dm3 = 1 l) e 0,135 l pesano pertanto 135g che corrispondono a
il numero di molecole presenti in 7,5 moli sarà dunque pari a 7,5 mol x 6,022 1023 mol-1 = 4,52 1024 |
Una conseguenza del principio di Avogadro è che un medesimo numero di moli di una qualsiasi sostanza gassosa devono occupare sempre il medesimo volume (a P e T costanti). Infatti se ‘volumi uguali di gas diversi nelle stesse condizioni di T e P contengono lo stesso numero di particelle’, allora deve anche essere vero che “gas che contengono lo stesso numero di particelle devono occupare lo stesso volume”. Se ne deduce pertanto che 1 mole di un qualsiasi gas, contenendo sempre lo stesso numero di particelle (il numero di Avogadro) deve occupare sempre il medesimo volume ed in particolare, a 0°C e alla pressione di 1 atm occupa un volume pari a 22,414 l, detto volume molare standard.
Come abbiamo già avuto modo di dire il concetto di mole è essenziale per semplificare i calcoli quantitativi o stechiometrici. La stechiometria (dal greco stoiceion = elemento, sostanza fondamentale) è quella parte della chimica che si occupa degli aspetti quantitativi delle reazioni ed in particolare dei rapporti numerici e ponderali che intercorrono tra le specie chimiche che reagiscono.
Per poter procedere con i calcoli stechiometrici è necessario che una equazione sia bilanciata.
In un’equazione bilanciata sono già definiti i rapporti numerici tra specie chimiche.
Quando scriviamo l’equazione bilanciata
3H2 + N2 → 2NH3
individuiamo ad esempio il rapporto numerico di reazione tra Idrogeno e Azoto che risulta essere pari a 3:1. Il rapporto tra Idrogeno ed ammoniaca è invece di 3:2 e così via.
Ma i coefficienti stechiometrici non rappresentano solo il numero di molecole, ma anche il numero di moli che reagiscono. Per rendercene conto, dopo aver ricordato che un’eguaglianza rimane tale se moltiplichiamo entrambi i suoi membri per uno stesso numero, moltiplichiamo entrambi i membri per il numero di Avogadro (NA).
NA ·(3H2 + N2) = NA·(2NH3)
Applichiamo la proprietà distributiva
3 NA ·(H2) + 1 NA ·(N2) = 2NA ·(NH3)
ma per la definizione di mole: un numero di Avogadro di molecole di Azoto costituiscono una mole di Azoto, 3 numeri di Avogadro di molecole di Idrogeno costituiscono 3 moli di Idrogeno e 2 numeri di Avogadro di molecole di Ammoniaca costituiscono 2 moli di Ammoniaca.
Se ne deduce quindi che i rapporti numerici precedentemente individuati tra i coefficienti stechiometrici non sono solo rapporti molecolari, ma anche rapporti molari. In altre parole per ogni 3 moli di Idrogeno reagisce 1 mole di Azoto per dare 2 moli di Ammoniaca.
Esempio – calcolo moli che reagiscono (rapporti numerici)
Calcoliamo quante moli di Idrogeno e di Azoto devono reagire per ottenere 0.35 moli di Ammoniaca.
Il rapporto numerico tra Idrogeno e Ammoniaca è /= 3/2. Tale rapporto deve sempre essere soddisfatto per cui, indicato con x il numero di moli di Idrogeno necessarie per produrre 0,35 moli di Ammoniaca, impostiamo la seguente proporzione
3 mol : 2 mol = x : 0,35 mol
che risolta ci da x = = 0,525 mol
Eseguiamo lo stesso calcolo per l’Azoto, osservando che il suo rapporto numerico con l’ammoniaca è /= 1/2. Impostiamo quindi la proporzione
1 mol : 2 mol = x : 0,35 mol
che risolta ci da x = = 0,175 mol
* * * * * * * *
I rapporti numerici possono essere facilmente trasformati in rapporti ponderali (e viceversa), utilizzando il Peso molare come coefficiente di conversione. Ricordiamo infatti le due formule di conversione
e
Dunque per trasformare i coefficienti stechiometrici, che rappresentano il numero n di moli che reagiscono, nell’equivalente quantità in peso W, è sufficiente moltiplicarli tutti per il rispettivo Peso molare. Riprendendo in considerazione la reazione di sintesi dell’Ammoniaca, potremo pertanto scrivere
3H2 + N2 ® 2NH3
6g H2 + 28g N2 = 34g NH3
In generale, prima di eseguire calcoli sulle quantità che reagiscono è bene preparare uno schema che visualizzi i rapporti molari ed i rapporti ponderali, nel modo seguente:
Peso molare (PM) |
2 g/mol |
|
28 g/mol |
|
17 g/mol |
Numero di moli (n) |
3H2 |
+ |
1N2 |
= |
2NH3 |
Peso totale (W = n ×PM) |
6 g |
+ |
28 g |
= |
34 g |
In questo modo sono subito evidenti sia i rapporti molari che i rapporti ponderali che intercorrono tra qualsiasi coppia di sostanze coinvolte nella reazione.
Troviamo così che
il rapporto ponderale Idrogeno/Azoto è
il rapporto ponderale Idrogeno/Ammoniaca è ,
il rapporto ponderale Azoto/Ammoniaca è .
il rapporto molare Idrogeno/Azoto è
il rapporto molare Idrogeno/Ammoniaca è ,
il rapporto molare Azoto/Ammoniaca è .
Si noti che si tratta di un’applicazione della legge di Proust delle proporzioni definite e costanti e che, se i calcoli sono stati eseguiti correttamente, viene verificato anche il principio di conservazione della massa: infatti la somma delle masse di tutti i reagenti deve essere uguale alla somma delle masse di tutti i prodotti.
Esempio - Calcolo masse che reagiscono (rapporti ponderali)
Calcoliamo quanti grammi di Idrogeno e di Azoto sono necessari per sintetizzare 100 g di Ammoniaca
Impostiamo una proporzione rispettando il rapporto ponderale Idrogeno/Ammoniaca
6 : 34 = x : 100
che, risolto, dà come risultato x = 17,65 g di H2.
Poiché vi sono solo due reagenti ed il loro peso complessivo deve essere pari al peso dei prodotti (100 g), la quantità di Azoto che reagisce sarà 100g –17,647g = 82,353g. Allo stesso risultato si può giungere risolvendo la proporzione impostata sul rapporto ponderale Azoto/Ammoniaca (28/34)
28 : 34 = x : 100
o quella impostata sul rapporto ponderale Idrogeno/Azoto (6/28)
6 : 28 = 17,647 : x
* * * * * * *
Nel caso in cui una reazione avvenga in più stadi, i prodotti di reazione di uno stadio diventano i reagenti dello stadio successivo. Anche in questo caso è sempre possibile individuare il rapporto stechiometrico esistente anche tra specie appartenenti a stadi diversi. Per far ciò è necessario sommare membro a membro le equazioni bilanciate in modo da eliminare le specie chimiche che compaiono in entrambi i membri
Esempio – Rapporto ponderale in reazione a più stadi
4FeS2 + 11O2 → 2Fe2O3 + 8SO2
2SO2 + O2 → 2SO3
SO3 + H2O → H2SO4
Calcoliamo quanti grammi di Pirite (FeS2) e di Ossigeno O2 sono necessari per ottenere 100 g di acido solforico H2SO4.
Moltiplichiamo per 4 entrambi i membri della seconda equazione e sommiamola membro a membro con la prima in modo da semplificare l’SO2 che rappresenta il prodotto della prima reazione necessario alla seconda per reagire.
4FeS2 + 11O2 → 2Fe2O3 + 8SO2 +
8SO2 + 4O2 → 8SO3 =
_______________________________
4FeS2 + 15O2 → 2Fe2O3 + 8SO3
Moltiplichiamo ora per 8 entrambi i membri della terza equazione e sommiamola membro a membro all’equazione appena ottenuta in modo da semplificare l’SO3.
4FeS2 + 15O2 → 2Fe2O3 + 8SO3 +
8SO3 + 8H2O → 8H2SO4 =
_______________________________
4FeS2 + 15O2 8H2O → 2Fe2O3 + 8H2SO4
Il rapporto ponderale Solfuro/Acido solforico è dunque
Sarà quindi necessaria 119,98 : 196,16 = x : 100 x = 61,16 g di pirite
Il rapporto ponderale Ossigeno/Acido solforico è invece
Sarà quindi necessario 479,98 : 784,65 = x : 100 x = 61,17 g di ossigeno
* * * * * * * *
Nel caso in cui i reagenti non siano presenti in proporzioni stechiometriche, uno di essi sarà presente in quantità insufficiente a permettere agli altri di consumarsi completamente nella reazione. Tale reagente è detto reagente limitante, mentre gli altri sono detti reagenti in eccesso. Mentre il reagente limitante, essendo presente in difetto rispetto al corretto rapporto stechiometrico, reagisce completamente, i reagenti in eccesso rimangono in parte inalterati alla fine della reazione. Anche la quantità di prodotti di reazione che si genera dipende dal reagente limitante che condiziona ovviamente tutte le specie chimiche che partecipano alla reazione.
Esempio – Reagente limitante
Calcoliamo quanti grammi di ammoniaca si sintetizzano facendo reagire 15 g di Idrogeno con 35 g di Azoto. Individuiamo il reagente limitante e calcoliamo quanto di esso rimane inalterato alla fine della reazione.
Il corretto rapporto stechiometrico Idrogeno/Azoto è 3/1 che corrisponde ad un rapporto ponderale 6/28. In base a tale rapporto ponderale calcoliamo quanti grammi di Azoto reagirebbero con 15 grammi di Idrogeno
6g : 28g = 15g : x
che risolta fornisce x = 70 g di Azoto, una quantità superiore a quella disponibile (35 g). L’Azoto è quindi il reagente in difetto e quindi limitante la reazione. Le quantità di tutte le altre specie chimiche che partecipano alla reazione devono essere calcolate rispetto all’Azoto.
Calcoliamo quanto Idrogeno reagisce
6g : 28g = x : 35g x = 7,5 g di Idrogeno
Dunque solo metà dell’Idrogeno reagisce.
La quantità di Ammoniaca che si forma può essere calcolata sommando le quantità dei due unici reagenti 35 + 7,5 = 42,5 g di Ammoniaca. Più in generale sarà necessario risolvere la proporzione impostata sul rapporto ponderale Azoto/Ammoniaca = 28/34
28g : 34g = 35g : x
* * * * * * * *
In molti casi le reazioni non si completano ed i prodotti di reazione si formano in misura inferiore a quanto consentirebbero i reagenti presenti. In tal caso è possibile calcolare una resa percentuale della reazione come rapporto tra la quantità di prodotto realmente ottenuta e la quantità di prodotto stechiometrica.
Esempio – Resa di una reazione
Facendo reagire 30 g di Idrogeno e Azoto in eccesso si ottengono 136g di Ammoniaca. Calcoliamo la resa della reazione.
L’Azoto in eccesso garantisce all’Idrogeno la possibilità di reagire completamente. La quantità teorica di Ammoniaca che si può sintetizzare si calcola attraverso una proporzione impostata sul rapporto ponderale Idrogeno/Ammoniaca = 6/34
6g : 34g = 30g : x x = 170 g di Ammoniaca
La resa della reazione è pertanto (136/170)x100 = 80%
Nota la composizione percentuale di un composto è possibile assegnargli una formula opportuna. Viceversa, nota la sua formula è possibile determinare la percentuale in peso dei diversi elementi che lo compongono.
L’analisi chimica di una sostanza fornisce in genere la composizione, espressa come percentuale di elementi chimici in essa presenti. Utilizzando questi dati analitici è possibile assegnare al composto una formula minima, detta anche formula empirica, formula grezza o formula bruta. Tale formula indica il minimo rapporto di combinazione tra gli elementi. Essa descriverà adeguatamente la sostanza se si tratta di un composto ionico, mentre potrebbe anche non farlo per un composto molecolare. In quest’ultimo caso è possibile assegnare la formula molecolare, solo se si è riusciti a determinare il Peso molecolare del composto stesso.
Esempio - Dalla composizione percentuale alla formula minima
300g di un composto di Sodio, Zolfo e Ossigeno contengono 97,2 g di Sodio e 67,5 g di Zolfo. Determiniamo la formula minima NaxSyOw del composto.
Il numero di moli contenute in 97,2 g di Sodio è
Il numero di moli contenute in 67,5 g di Zolfo è
Il numero di moli contenute nei rimanenti 135,3 g di Ossigeno è
Il rapporto numerico di combinazione tra gli elementi è dunque Na/S/O = 4,23/2,11/8,46. Per ottenere un rapporto espresso in numeri interi dividiamo tutto per il più piccolo numero di moli ottenuto (2,11).
Si ottiene così Na/S/O = 2/1/4. La formula cercata è Na2SO4.
Esempio - Dalla composizione percentuale alla formula molecolare
L’analisi qualitativa e quantitativa di un composto di Peso molecolare pari a 180 u ha fornito i seguenti risultati 40% di Carbonio, 6,6% di Idrogeno e 53,4% di Ossigeno. Determiniamo la formula molecolare CxHyOw.
Prendiamo arbitrariamente in considerazione 100 g di composto i quali saranno ovviamente costituiti da 40 g di C, 6,7 g di H e 53,3 g di O. Calcoliamo il numero di moli presenti
Il rapporto di combinazione è C/H/O = 3,3/6,6/3,3 =1/2/1.
La formula minima risulta essere allora C1H2O1, che corrisponde ad un peso formula è pari a 30 u. Calcoliamo ora il rapporto tra il peso molecolare ed il peso formula, 180/30 = 6. Ciò significa che la formula molecolare può essere ottenuta moltiplicando per 6 tutti gli indici della formula minima: C6H12O6
Esempio - Dalla formula alla composizione percentuale
Calcoliamo che percentuale di Ferro è presente nei composti FeS2 ed Fe2O3.
Il peso molare del solfuro di ferro è
La percentuale di Ferro in esso presente è 55,85/121,05 = 0,46 pari al 46%.
Il peso molare dell’ossido ferrico è
La percentuale di Ferro in esso presente è 111,70/159,70 = 0,70 pari al 70%
Nel 1865 Loschmidt eseguì la prima stima di NA, calcolando un valore compreso tra 1023 e 1024. Egli potè anche affermare che le dimensioni molecolari dovevano essere dell’ordine di 10-8 cm.
Fonte: http://www.pianetachimica.it/didattica/documenti/Chimica_Generale.doc
Sito web da visitare: http://www.pianetachimica.it
Autore del testo: non indicato nel documento di origine
Il testo è di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente i loro testi per finalità illustrative e didattiche. Se siete gli autori del testo e siete interessati a richiedere la rimozione del testo o l'inserimento di altre informazioni inviateci un e-mail dopo le opportune verifiche soddisferemo la vostra richiesta nel più breve tempo possibile.
I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore
Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).
"Ciò che sappiamo è una goccia, ciò che ignoriamo un oceano!" Isaac Newton. Essendo impossibile tenere a mente l'enorme quantità di informazioni, l'importante è sapere dove ritrovare l'informazione quando questa serve. U. Eco
www.riassuntini.com dove ritrovare l'informazione quando questa serve