Raffreddamento dei semiconduttori

Raffreddamento dei semiconduttori

 

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

 

 

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

 

 

 

Raffreddamento dei semiconduttori

 

RAFFREDDAMENTO DEI SEMICONDUTTORI
La corretta dissipazione dell'energia termica, nei componenti attivi, è una garanzia di lungo e sicuro funzionamento.
I radiatori, chiamati pure raffreddatori, proteggono le giunzioni dei semiconduttori, assicurando il loro normale comportamento.
Il concetto di resistenza termica riveste grande importanza nella pratica dell'elettronica. Perché da esso dipende la qualità del funzionamento e la durata nel tempo di buona parte dei montaggi realizzati.
Ogni fenomeno elettrico è sempre accompagnato, in misura minore o maggiore, da effetti termici. La lampadina, ad esempio, il cui compito dovrebbe essere soltanto quello di far luce, quando è accesa scotta. Il trasformatore, il cui compito principale è quello di abbassare od elevare una tensione, si riscalda. Il televisore in funzione emana calore. Dunque, questi e tantissimi altri esempi, stanno a dimostrare che i conduttori elettrici, al passaggio della corrente, aumentano la loro temperatura, la quale raggiunge valori sempre più elevati con l'aumentare dell'intensità di corrente che li attraversa. E se vogliamo citare un dato preciso, possiamo ricordare che, quando si superano i 6 A per millimetro quadrato di sezione di filo conduttore di rame, la temperatura del cavo oltrepassa gli 80°C, divenendo assai pericolosa. Questo tipo di produzione di energia termica, è causato dagli urti che le particelle infime della materia subiscono nel sostenere il flusso di corrente elettrica. In fisica esso assume le denominazione di "Effetto Joule" e viene sfruttato nella costruzione di alcuni dispositivi, come ad esempio le stufette per riscaldamento e i ferri da stiro. Ma il più delle volte costituisce un fenomeno negativo, da evitare e da combattere. Così come accade nell'uso dei semiconduttori, diodi, transistor e circuiti integrati, per i quali si deve intervenire in modo appropriato, dimensionando oculatamente i valori di tensioni e correnti ed applicando ad essi idonei elementi raffreddatori.
ESEMPI PRATICI
Osserviamo i disegni riportati in figura 1.
http://www.microst.it/Tutorial/images/raffre1.jpgFig. 1 - Rappresentazione fisica, a sinistra, di un transistor e del suo simbolo elettrico, a destra.
Sulla sinistra è presente lo schema fisico di un transistor, sulla destra il simbolo grafico. Sigle e frecce indicano le tensioni e le correnti che interessano il componente in funzione. Dalle quali, pertanto, dipende il suo grado di riscaldamento. Infatti si dice che la corrente di collettore le provoca una perdita di potenza, pari al prodotto le x Vce (tensione collettore-emittore), che viene appunto trasformata in calore. E questo può essere di lieve entità nei transistor cosiddetti di segnale, ma può raggiungere valori molto grandi nei transistor di potenza.
Anche la corrente di base Ib (non citata negli schemi di figura 1), è in grado di provocare perdite, per effetto Joule, pari al prodotto Ib x Vbe (tensione base-emittore), ma si tratta comunque di perdite trascurabili.
Sempre dalla figura 1 è possibile dedurre che la corrente di emittore le corrisponde alla somma delle due correnti di collettore e di base (le = le + Ib). E questa stessa osservazione si estende alla tensione Vce, che è pari alla somma delle due tensioni Vcb e Vbe (Vce = Vcb + Vbe).


Lo schema riportato in figura 2 interpreta un esempio più pratico di quello di figura 1 perché si riferisce ad un transistor impiegato come interruttore
http://www.microst.it/Tutorial/images/raffre7.jpg    Fig. 2 - La potenza elettrica dissipata da un  transistor è data dal prodotto della tensione di collettore per la corrente che lo percorre.
Nello schema di fig. 2, supponendo che la resistenza di collettore Re abbia il valore di 80 ohm, che la tensione di alimentazione sia di 9 V, la corrente di 100 mA e la tensione di collettore di 1 V, che in questo caso è chiamata tensione di saturazione, è facile calcolare la potenza dissipata, ossia quanta energia elettrica viene trasformata in calore:
1 V x 0,1 A = 0,1W
In questo prodotto è trascurata la potenza dissipata dalla base, che si aggira intorno ai pochi milliwatt. Se in queste condizioni elettriche il transistor si trovasse termicamente isolato, cioè se fosse introdotto in uno speciale contenitore sotto vuoto spinto, con pareti perfettamente riflettenti, come potrebbe essere un termos ideale, la sua temperatura salirebbe in continuazione, fino a raggiungere il valore sufficiente a provocare la fusione del componente, che per i transistor al silicio è di 200°C circa. Ma il transistor, fortunatamente, non è mai isolato termicamente in modo assoluto ed è pure dotato di un suo potere dispersivo del calore che si identifica in una certa resistenza termica la quale si misura in gradi centigradi per watt.

 


http://www.microst.it/Tutorial/images/raffre8.jpg
0        25   50    75   100  125  150  175  200
Fig. 3 - Diagramma interpretativo della potenza di collettore in funzione della tempe­ratura ambiente. Sull'asse verticale sono riportati i valori, espressi in watt, delle po­tenze di collettore, su quello orizzontale sono segnalati i valori di temperatura am­biente espressi in gradi centigradi.
Facendo riferimento al diagramma di figura 3, è possibile constatare come il transistor impiegato nell'esempio precedente, con una dissipazione di potenza di 0,1 W, possa funzionare fino alla temperatura ambiente di 125°C, mantenendo così la temperatura della sua giunzione, ovvero la temperatura dei cristallo di silicio con cui è realizzata la parte attiva, ad una temperatura inferiore a quella massima di 175°C consigliata per un lungo ed affidabile comportamento dei transistor in contenitore metallico o di quelli in contenitore plastico di produzione più recente ed evoluta.
SCAMBIO TERMICO CON L'ARIA
Lo schema riportato in figura 4 interpreta più dettagliatamente la meccanica di scambio della energia termica, prodotta dalla giunzione del transistor, fra questa, il contenitore di metallo e l'aria che circonda il componente.
ARIA = TEMP.AMBIENTE - 125°C

http://www.microst.it/Tutorial/images/raffre9.jpgFig. 4- Interpretazione fisica dettagliata della meccanica di scambio dell'energia termica fra la giunzione del transistor, il contenitore e l'aria circostante.
Supponendo di sfruttare al massimo le possibilità termiche del dispositivo, ossia con la giunzione alla temperatura di 175°C e ritenendo ancora la potenza dissipata nella misura di 0,1 W, il cristallo trasmette la potenza stessa al contenitore attraverso una resistenza termica di 200°C/W. Conseguentemente, la temperatura scende di 20°C ed il contenitore si porta a 155°C. Ma il contenitore metallico del transistor vanta con l'aria una resistenza termica di 300°C/W e ciò significa che esso fa scendere la temperatura di altri 30°C, consentendo all'aria circostante di assumere il valore massimo di 125°C.
L'esempio ora citato potrà sembrare un caso limite, dato che normalmente la temperatura dell'aria, che investe il transistor durante il suo funzionamento, rimane inferiore agli 80°C. Ma bisogna considerare che il valore attribuito dal costruttore alla resistenza termica contenitore-aria ambiente, è un dato rilevato in particolari condizioni fisiche, cioè in camera termica, con un montaggio che non ostacola i moti convettivi dell'aria e sfrutta appieno l'irradiamento termico della custodia (pareti della camera assorbenti).
Il transistor, nella pratica di ogni giorno, non raggiunge mai le condizioni ideali ora menzionate. Anzi, molto spesso, trovandosi a funzionare in prossimità di parti o componentî che emanano calore, può facilmente degradare il valore di resistenza termica, come se la temperatura dell'aria, nelle vicinanze del componente, raggiungesse effettivamente i 125°C, pur con temperature ambiente di 80°C.
Coloro che volessero misurare la reale temperatura della custodia del transistor dovranno tener conto di aver a che fare con piccole potenze in gioco, per causa delle quali, appoggiando soltanto -la sonda del termometro sul componente, anche se questa è caratterizzata da una piccola massa, possono formare uno shunt termico, ossia un ponte termico in grado di raffreddare il transistor e falsare quindi la misura.  
Per ottenere misure di temperatura esatte, occorre servirsi di un termometro a raggi infrarossi, peraltro poco diffuso, oppure valutare più semplicemente la temperatura di giunzione, misurando la tensione Vbe, cioè la tensione presente fra base ed emittore e tenendo conto che questa diminuisce di 2,2 mV per ogni grado centigrado di aumento di temperatura dal valore di Vbe a 25°C.
EFFETTO RADIATORE
Prima di analizzare gli effetti di dissipazione termica prodotti dagli elementi raffreddatori inseriti sui semiconduttori, vogliamo ricordare, molto brevemente, in che modo il calore si propaga attraverso i mezzi solidi, liquidi e gassosi. 
L'energia termica, ossia il calore, si diffonde in tre modi diversi, che dipendono dall'elemento veicolare. Essi sono:

  • Conduzione
  • Convezione
  • Irraggiamento

http://www.microst.it/Tutorial/images/raffre10.jpgAttraverso i mezzi solidi, per esempio nei metalli, il calore si diffonde per conduzione, nei liquidi e nei gas si propaga per convezione e nel vuoto per irraggiamento. II calore del sole ad esempio, che attraversa il vuoto e l'aria, arriva sulla terra per irraggiamento e per convezione. Quello della fiamma del gas, che riscalda l'acqua contenuta in una pentola, si espande dapprima per conduzione (metallo della pentola), poi per convezione (acqua contenuta nel recipiente). Detto ciò possiamo ora dire che, con l'impiego di appositi radiatori, fissati sui contenitori dei semiconduttori, per esempio sui transistor, si può aumentare il potere di dissipazione dell'energia termica, sfruttando i tre modi di diffusione del calore, per conduzione, per convezione e per irraggiamento. 
Facciamo riferimento allo schema riportato in figura 5 e notiamo che le quattro temperature rilevabili assumono valori decrescenti a partire dalla giunzione del transistor. 

Fig. 5 - Quando sul contenitore del transistor è inserito un radiatore, si possono rilevare quattro valori di tem­peratura diversi, in misura decrescente a partire dalla giunzione e fino al mezzo gassoso (aria).
Il calore, infatti, fluisce dapprima attraverso la resistenza termica giunzione-contenitore, dove si verifica un primo abbassamento di temperatura; poi, anziché passare direttamente all'ambiente, attraverso l'elevata resistenza termica contenitore-ambiente, raggiunge il radiatore attraverso la resistenza contenitore-radiatore, che è alquanto bassa se fra i due elementi viene interposto un velo di grasso al silicone. Pertanto, con l'effetto trascurabile della resistenza termica contenitore-radiatore, la temperatura del radiatore sarà di poco inferiore a quella del contenitore. Dal radiatore, infine, il calore si propaga nello spazio circostante sia per convezione, sia per irraggiamento. Possiamo concludere dicendo che, essendo la resistenza termica radiatore-ambiente assai inferiore a quella contenitore-ambiente, a parità di temperature in gioco, con l'uso del radiatore viene dissipata una maggiore quantità di calore. 
RAFFREDDAMENTO NEI DIODI
L'analisi teorica fin qui esposta si estende anche ad altri semiconduttori, diversi dai transistor, per esempio ai diodi, che sono pure elementi attivi. Prendiamo in esame il modello 1N4148 in custodia di vetro, riportato in figura 6, nella quale le due indicazioni "Rf" stanno a significare "reofori". 
DIODO
http://www.microst.it/Tutorial/images/raffre11.jpg
Fig. 6 - La maggior quantità di energia termica, prodot­ta da un diodo, viene dissipata attraverso i suoi reofori (Rf) e le piste di rame del circuito stampato in cui rima­ne applicato. Soltanto in minima parte il calore viene espulso attraverso il contenitore dei componente.
Questo tipo di diodo ammette una temperatura di giunzione di 200°C e dissipa il calore generato attraverso i suoi terminali (reofori) e le piste di rame del circuito stampato in cui è inserito. In minima parte, il calore viene pure dissipato attraverso la custodia. In sostanza, le possibilità di espellere il calore prodotto dipende dal modo con cui si realizza il cablaggio del componente. 
Per esempio, mantenendo la lunghezza dei reofori nella misura di 4 mm e supponendo che la larghezza della pista di rame del circuito stampato in cui è applicato il componente sia di 2 mm, diviene valido il diagramma riportato in figura 7, con cui il costruttore accompagna il diodo, se questo viene utilizzato nel modo ora descritto.
http://www.microst.it/Tutorial/images/raffre12.jpgFig. 7 - Diagramma relativo alla potenza massima, in funzione della temperatura, dissipata dal diodo modello 1N4148.
Osservando il diagramma di figura 7, si può notare, ad esempio, che se il diodo dissipa una potenza di 0,34 W, esso può funzionare ad una temperatura ambiente inferiore agli 80°C, mantenendo ovviamente la giunzione a temperature inferiori ai 200°C.
TRANSISTOR DI POTENZA
Le cose si complicano notevolmente quando, prendendo in considerazione gli elementi fin qui analizzati, ci si riferisce ai transistor di potenza. Per i quali i costruttori non offrono quasi mai dei dati precisi ed immediatamente utilizzabili per impieghi pratici dei componenti. E tutto ciò perché il potere di dissipazione, nei transistor di potenza, dipende in massima parte dalle condizioni di montaggio. Il solo dato che il costruttore dichiara è quello della potenza dissipabile nel caso di impiego di raffreddatore ideale, non realizzabile nella pratica comune, ma soltanto e approssimativamente componibile, a prezzi proibitivi, in pochi laboratori specializzati. Ma questo è un modo per fornire l'indicazione della resistenza termica giunzione-contenitore del transistor. Quando si monta praticamente un transistor in un circuito utilizzatore, secondo la tecnica abituale indicata in figura 8, per valutare la reale possibilità di dissipazione termica del componente, occorre sommare la resistenza termica giunzione-contenitore con quella radiatore-ambiente in condizioni ideali. Tuttavia, prima di procedere con questo metodo di calcolo, si deve osservare attentamente il radiatore, perché qualche modello reca una particolare indicazione che ne obbliga l'uso in ventilazione ad aria forzata, alla velocità di parecchi metri al secondo (m/s).
Fig. 8 - Normale metodo di applicazione di un transistor di potenza su telaio metallico, con interposizione di foglietto isolante di mica e di grasso al silicone.  

Il diagramma riportato in figura 9 interpreta il comportamento di un transistor munito di dissipatore ideale.
http://www.microst.it/Tutorial/images/raffre14.jpg
                                           

 

 

 

 

 

               0    25    50    75  100  125  150  175  200

Fig. 9 - Curva interpretativa della dissipazione di un transistor di potenza munito di radiatore ideale (tratto intero) e diagramma relativo alla dissipazione dello stesso componente munito di raffreddatore reale (linea tratteggiata).
 Mantenendo la giunzione a meno di 200°C, ad una temperatura ambiente di 75°C, il componente è in grado di dissipare la potenza termica di 80 W. E questo è il caso dei transistor di buona qualità in genere, realizzati in contenitore metallico, i quali con l'impiego di un reale, ma ottimo radiatore, possono dissipare potenze fino a 35 W. Dunque, il diagramma di figura 9 fa riferimento, con la sua linea intera, agli impieghi dei transistor di potenza con radiatore ideale. Con la linea tratteggiata, lo stesso diagramma interpreta il comportamento dei transistor di potenza montati nei circuiti con raffreddatore reale. 
In figura 10 e' riportato come deve essere posizionato il radiatore mentre in figura 11 e' riportato un modello di radiatore di potenza.
CALCOLO DISSPIATORI DI CALORE
dissi1.gif-8Kb
C= CONTENITORE TRANSISTORE
D= DISSIPATORE (ALETTA DI RAFFREDDAMENTO)
A= AMBINETE DOVE LAVORA IL TRANSISTORE
Rjc = Resistenza termica fra junzione e contenitore
Rcd= Resistenza termica fra contenitore e dissipatore
Rda= Resistenza termica fra dissipatore e ambiente
Rja = Resistenza termica fra junzione e ambiente, la somma di tutte le resistenze termiche.
Rja= Rjc + Rcd + Rda
La resistenza termica si può definire come salto di temperatura diviso la potenza
Rt = dT/ W In particolare per il caso dei transistori sarà:
Pot. Diss.= ( Tj - Ta )/ Rja
Dal manuale dei transistori si può conoscere la Tjmax e la Pmax per una temperatura del contenitore di 25 gradi ºC, pertanto per un 2N3055 si avrà
Rjc= (220 ºC - 25 ºC)/ 115 W = 1.52 ºC/W
Per sicurezza si usa una Tj pari a Tjmax moltiplicata per un fattore compreso tra 0.5 e 0.7
Rjc= (Tj - Tc)/ Pmax
Rja= (Tj -Ta)/ Pmax
Tc= Ta+ Pmax(Rcd + Rda) Td=Ta + Pmax Rda
ESEMPIO:
DIMENSIONAMNETO DI ALETTA PER UN 2N3055 CHE DEVE DISSIP. 20W
Tjmax da manuale = 200 ºC da cui Tj= 200 x 0.5 = 100 ºC
Supponiamo che i 20W vengano dissipati in un ambiente che raggiunge 30ºC
Rja= (Tj - Ta)/ 20 = 70/20 = 3.5 ºC/W
Rjc= (Tjmax -25 ºC)/115 = ( 200 - 25 )/ 115 = 1.52 ºC/W
Dalla tabella di Rcd in funzione del contenitore per il TO3 senza mica a contatto diretto ho
Rcd= 0.25 ºC/W
Conoscendo che Rja= Rjc + Rcd + Rda posso trovare :
Rda= Rja - Rjc - Rcd = 3.5 - 1.52 - 0.25 = 1.73 ºC/W
Devo ora trovare un dissipatore con una resistenza termica di 1.73 ºC/W Se al posto di una aletta apposita uso una piastra di alluminio nero di spessore 2mm, posso usare la formula seguente per deteminare i cm quadrati di superfice S.
S= 335/ Rda = 335/1.73 = 192 cm2
Se l'alluminio é bianco : S= 400/Rda = 400/1.73 = 231 cm2
Per finire possiamo calcolare la temperatura che raggiungerà il contenitore del transistore
Tc= Ta+ P (Rcd + Rda) =30 + 20 (0.25 + 1.73)= 69.6 ºC
mentre quella del dissipatore sarà :
Td= Ta+ P x Rda = 30 + 20 x 1.73 = 64.6 ºC

 

Fonte: http://share.dschola.it/castigliano/elettronici/4F/Materiali/Varie/DISSIPAZIONE%20DI%20CALORE.doc

Sito web da visitare: http://share.dschola.it

Autore del testo: non indicato nel documento di origine

Il testo è di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente i loro testi per finalità illustrative e didattiche. Se siete gli autori del testo e siete interessati a richiedere la rimozione del testo o l'inserimento di altre informazioni inviateci un e-mail dopo le opportune verifiche soddisferemo la vostra richiesta nel più breve tempo possibile.

 

Raffreddamento dei semiconduttori

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

Raffreddamento dei semiconduttori

 

"Ciò che sappiamo è una goccia, ciò che ignoriamo un oceano!" Isaac Newton. Essendo impossibile tenere a mente l'enorme quantità di informazioni, l'importante è sapere dove ritrovare l'informazione quando questa serve. U. Eco

www.riassuntini.com dove ritrovare l'informazione quando questa serve

 

Argomenti

Termini d' uso, cookies e privacy

Contatti

Cerca nel sito

 

 

Raffreddamento dei semiconduttori