pH in soluzioni molto diluite di acidi e basi forti

pH in soluzioni molto diluite di acidi e basi forti

 

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

 

 

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

 

 

 

pH in soluzioni molto diluite di acidi e basi forti

Il pH di Acidi e Basi deboli

Gli acidi deboli, in soluzione, sono parzialmente dissociati. Ovvero danno luogo ad un equilibrio come, ad esempio nel caso dell'acido acetico:

CH3COOH + H2O = H3O+ + CH3COO-

L'equilibrio è molto spostato a sinistra. Per calcolare il pH di una soluzione di un acido debole è necessario conoscere quanto l'acido è dissociato. Il parametro che fornisce questa indicazione è la sua Ka, ovvero la sua costante di dissociazione acida. La Ka è definita attraverso la costante di equilibrio della reazione di dissociazione.

 (1.2)

Vi ricordo che la concentrazione molare dell'acqua, che resta anche in questo caso costante, è contenuta nel valore di Ka, analogamente a quanto abbiamo sottolineato a proposito della Keq della dissociazione dell'acqua e di Kw.

Tanto maggiore è il valore della Ka, tanto maggiore è la tendenza dell'acido a dissociarsi, ovvero tanto più forte è l'acido. I valori di Ka degli acidi più comuni si trovano spesso tabulati sulle Tavole periodiche.

Prima di utilizzare l'equazione 1.2 per il calcolo del pH, è necessario fare un paio di considerazioni:
a. Poiché per ogni molecola di acido acetico dissociata vi è uno ione H3O
+ e uno ione CH3COO-, queste due specie sono quantitativamente identiche: ovvero, [H3O+] = [CH3COO-].

b. Poiché l'acido è poco dissociato, la concentrazione dell'acido indissociato, che compare al denominatore nell'equazione all'equilibrio, può essere considerata uguale alla concentrazione analitica dell'acido, C°a.
Quindi, per un qualsiasi acido debole, la 1.2 diventa:

 (1.3)

da cui:

  (1.4)

Esempio di calcolo: Calcolare il pH di una soluzione 0.1 M di acido acetico.
Si usa l'equazione 1.4; la Ka dell'acido acetico è circa 1.8 x 10
-5 M. Quindi [H+] = 0.00134 M, e il pH = 2.87.
L'approssimazione che si fa è quella di trascurare la [H
+] che proviene dalla autoionizzazione dell'acqua, e quella di considerare la [CH3COOH] = C°a.
In generale, si può mostrare che la validità della approssimazione è relativa alla concentrazione analitica dell'acido e al valore della sua Ka. Nel caso specifico dell'acido acetico, l'errore del calcolo approssimato inizia ad essere significativo per C°a < 10
-4 M, ed è dovuto essenzialmente all'assunzione di considerare Ca = C°a. Per un acido con una Ka maggiore di 10-5, l'errore comincia ad essere sensibile anche a concentrazioni 10–100 volte superiori al limite indicato per l'acido acetico. Viceversa, nel caso di acidi molto deboli in soluzioni diluite può acquistare importanza il contributo degli H+ provenienti dall'autoionizzazione dell'acqua.

Per il calcolo "esatto" del pH di un qualsiasi acido debole monoprotico è necessario risolvere un'equazione di 3° grado, che si ricava dalla soluzione di un sistema di tre equazioni, basate sull'equilibrio di dissociazione, il bilancio delle cariche e il bilancio delle masse.

Suggerimento per la derivazione dell'equazione:
Si ricavi HA dalla (3) e A- dalla (2); si sostituisca HA e A- nella (1). Si ottiene un'equazione in una incognita, H
+, che attraverso semplici passaggi algebrici si riconduce alla forma finale di 3° grado.

L'equazione di 3° grado suggerisce che per quanto "grande" possa essere Ka (trattandosi di un acido debole, sarà comunque < 10^-2), il termine Ka Kw può essere trascurato rispetto a Ka C°a (essendo ca. = 0), e l'equazione si riduce al 2° grado:

[H+]2 + Ka [H+] - Ka C°a - Kw = 0 (1.5)

Se Ka C°a >> Kw (si rifletta attentamente sulle condizioni necessarie affinché ciò si verifichi), anche Kw può essere trascurato, e l'equazione 1.5 diventa:

  (1.6)

Che non è altro che l'equazione di secondo grado da usare per il calcolo del pH di acidi di "media forza" (o anche deboli), quando la concentrazione dell'acido all'equilibrio non può essere considerata uguale alla sua concentrazione analitica e la soluzione non sia eccessivamente diluita.
Infine, se Ka [H
+] << Ka C°a (soffermatevi anche qui per una breve riflessione), in pratica C°a >> [H+] (ovvero per acidi deboli), anche questo termine (Ka [H+]) diventa trascurabile e l'equazione 1.6 si riduce alla 1.3, e il pH si calcola con la 1.4.

Viceversa, se anche Ka C°a è molto piccolo, occorre tornare alla soluzione dell'equazione di 3° grado.

La scelta della formula da usare per il calcolo del pH di acidi medio-deboli è in pratica condizionata dalla risposta che siete capaci di dare al quesito: "Quand'è che posso considerare la concentrazione dell'acido all'equilibrio uguale alla sua concentrazione analitica?"
Se potete fare questa assunzione, usate la formula "abbreviata" 1.4, altrimenti dovere risolvere la 1.6.

Per comprendere quale sia la risposta da dare, osservate il grafico qui a fianco, in cui viene riportato l'errore %, che si commette nella determinazione del pH usando la 1.4, in funzione della concentrazione dell'acido (in ascisse, in scala logaritmica), per diversi valori di Ka (a fianco di ciascuna curva è indicata la pKa).
Come si vede, l'errore aumenta al diminuire della concentrazione e all'aumentare della Ka. L'errore, che è sempre negativo (ovvero si ottengono valori di pH sottostimati), può essere anche notevole, fino a superare il 20%. Già con l'acido acetico (pKa ca. 5), ad una concentrazione intorno a 0.0001 M l'errore è oltre il 2%.
Il motivo di questo andamento dell'errore è dovuto al fatto che il grado di dissociazione di un acido (o di una base) aumenta con l'aumentare della diluizione, per cui acquista sempre più importanza la differenza fra concentrazione dell'acido indissociato all'equilibrio e la sua concentrazione analitica. Il divario è tanto più marcato, quanto più l'acido è forte.
La deviazione in senso opposto della curva relativa ad una Ka molto bassa (pKa = 9), è invece dovuto al fatto che in questo caso, anche a concentrazioni non eccessivamente basse (10^-5 M) non è più trascurabile il contributo degli ioni H
+ che derivano dalla dissociazione dell'acqua.

Basi deboli. Il caso è del tutto analogo a quello di un acido debole. L'ammoniaca è un classico esempio di base debole. Le proprietà basiche dell'ammoniaca non trovano giustificazione nella teoria di Arrhenius.
In soluzione, l'ammoniaca dà luogo alla seguente reazione con l'acqua:

NH3 + H2O = NH4+ + OH-

Anche questo equilibrio è molto spostato a sinistra.

Le considerazioni fatte a proposito dell'acido acetico sono del tutto applicabili a questa reazione.
Ovviamente, in questo caso si parlerà di una costante di dissociazione basica e di ioni OH- anziché H
+.

Infatti:

 (1.7)

Da cui si ottiene che:

  (1.8)

in cui C°b indica in questo caso la concentrazione analitica della base.


Questo box è riservato a chi vuol continuare a "tormentarsi"

Infatti, qualcuno potrebbe -giustamente- chiedersi come ci si debba comportare nel caso di un acido debole estremamente diluito.
È necessario ricorrere all'equazione di 3° grado?
Beh, quella non tradisce mai, perché è stata ricavata tenendo conto anche degli ioni H
+ provenienti dalla autoionizzazione dell'acqua, oltre che dell'effettiva concentrazione dell'acido indissociato all'equilibrio.
Ma come si risolve un'equazione di 3° grado?
Esiste una formula risolutiva anche per le equazioni di terzo grado, tuttavia è un po' complicata e poco praticabile per il calcolo "manuale". Chi volesse cimentarsi nella soluzione - non si sa mai potreste avere una vocazione "matematica" -, può leggere le 
sette paginette in formato pdf del prof. Gorni.

Vediamo piuttosto se sia possibile trovare qualche approssimazione soddisfacente attraverso una via alternativa.
Calcoliamo, ad esempio, il pH di una soluzione 10
-6 M di acido acetico, utilizzando le tre formule di cui disponiamo: la 1.4, la 1.6 e l'equazione di 3° grado.

(1.4) => pH = 5.37!
(1.6) => pH = 6.02
(e.3°) => pH = 6.02

Se ne deduce che l'equazione di 2° grado è sufficiente a fornire un risultato corretto anche in condizioni quasi estreme.

E se la concentrazione dell'acido fosse 10-7 M?
Lasciando perdere la 1.4 (che già cominciava a vacillare a concentrazioni < 10
-4 M, come indicato nel grafico), le soluzioni sono le seguenti:

(1.6) => pH = 7.00
(e.3°) => pH = 6.79

A queste concentrazioni, nemmeno l'equazione di 2° grado è più all'altezza della situazione: come abbiamo fatto nel caso di acidi forti estremamente diluiti, è indispensabile tener conto degli H+ dell'acqua.
Ci lasciamo prendere dalla disperazione o avremmo potuto fare qualche considerazione sulla base del risultato precedente?
Qual è il grado di dissociazione dell'acido acetico in una soluzione 10
-6 M? Circa 9.6x10-7/10-6 = 96%. Il che significa che l'acido è praticamente completamente dissociato.
Quindi, un acido debole in soluzioni molto diluite si comporta come un acido forte. Se questo è vero per concentrazioni 10
-6 M, a maggior ragione è valido per concentrazioni inferiori. Se questo è vero per l'acido acetico, a maggior ragione è valido per acidi con Ka maggiori. Quindi il problema si riduce al caso di un acido forte in soluzioni molto diluite. Si veda a questo proposito l'esercizio sull'acido cloridrico 10-7 M.

Queste considerazioni sono valide anche per acidi più deboli dell'acido acetico?
Fino ad un certo limite. Il problema si ripropone infatti in modo serio per acidi molto deboli, con Ka < 10
-8
Ripetiamo i nostri calcoli per due acidi deboli, Ka = 10
-7 e Ka = 10-9, a concentrazione 10-6 M.

              Ka 10-7              Ka 10-9

  (1.6) =>  pH = 6.57             pH = 7.51!

  (e.3°) => pH = 6.54             pH = 6.98

Anche in questi casi, c'è tuttavia una scappatoia: si ottiene un'ottima approssimazione utilizzando l'equazione 1.5, che col termine Kw tiene parzialmente conto degli ioni H+provenienti dalla dissociazione dell'acqua. Con questa equazione si ottiene infatti pH = 6.54 e 6.98, rispettivamente, per i due acidi deboli.

 

 

Fonte: http://www.liceoxxvaprile.it/wp-content/uploads/2013/11/Il-pH-di-Acidi-e-Basi-deboli.docx

Sito web da visitare: http://www.liceoxxvaprile.it

Autore del testo: non indicato nel documento di origine

Il testo è di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente i loro testi per finalità illustrative e didattiche. Se siete gli autori del testo e siete interessati a richiedere la rimozione del testo o l'inserimento di altre informazioni inviateci un e-mail dopo le opportune verifiche soddisferemo la vostra richiesta nel più breve tempo possibile.

 

pH in soluzioni molto diluite di acidi e basi forti

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

pH in soluzioni molto diluite di acidi e basi forti

 

"Ciò che sappiamo è una goccia, ciò che ignoriamo un oceano!" Isaac Newton. Essendo impossibile tenere a mente l'enorme quantità di informazioni, l'importante è sapere dove ritrovare l'informazione quando questa serve. U. Eco

www.riassuntini.com dove ritrovare l'informazione quando questa serve

 

Argomenti

Termini d' uso, cookies e privacy

Contatti

Cerca nel sito

 

 

pH in soluzioni molto diluite di acidi e basi forti