Matematica quiz

Matematica quiz

 

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

 

 

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

 

 

 

Matematica quiz

 

Test di Aritmetica

 

 1. 8.754.896 . 4893 =

     A) 42.837.706.128

     B) 42.837.706.129

     C) 42.837.706.126

     D) 42.137.706.125

     E) 42.137.706.124

 

2. Quale dei numeri inseriti nelle risposte è il massimo?

     A) 2,5

     B) 1

     C) p/4

     D) p /2

     E) 0

   

3. Quale delle seguenti potenze è uguale ad un numero reale?

     A) (- 4)1/6

     B) (- 4)1/2

     C) (- 4)1/4

     D) (- 4)1/3

     E) (- 4)1/8

 

4. Nell'insieme dei numeri reali 82/3 =

     A) 16/3

     B) 4

     C) 1/12

     D) 64/3

     E) 12

 

5. log10 4 + log10 3 =

     A) log10 (4 . 3)

     B) log10 (4 + 3)

     C) log10 (4/3)

     D) log10 43

     E) un numero diverso da quelli delle precedenti risposte

 

6. La decima parte di 1020 è:

     A) 120

     B) 1021

     C) 1010

     D) 1019

     E) 102

 

7. Quante cifre ha il numero 3100 nella rappresentazione decimale (si tenga conto che il log10 3 = 0, 477...):

     A) 47

     B) 50

     C) 48

     D) nessuno dei numeri precedenti

     E) 300

   

8. Se il 3% di N è 15, quanto è N?

     A) 0,45

     B) 500

     C) 450

     D) 0,50

     E) 45

 

9. Il rapporto 5/0 equivale a:

     A) 1/5

     B) è impossibile

     C) 0

     D) 1

     E) 5

10. 10-12/103 =

     A) 10-9

     B) 10-15

     C) 10-4

     D) 1015

     E) 109

 

11. Qual è il numero successivo a quelli dati nella successione 1, 2, 5, 14?

     A) 41

     B) 50

     C) 62

     D) 83

     E) 95

 

12. L'ordine crescente dei numeri x = 0,8;     y = 0,63;     z = 13/20;    w = 7/25 è:

     A) w, y, x, z

     B) y, w, z, x

     C) w, y, z, x

     D) y, z, w, x

     E) x, y, z, w

    

13. Il logaritmo decimale di un numero compreso fra 0 ed 1 è compreso fra:

     A) -1 e +1

     B) -1 e 0

     C) -infinito e 0

     D) -infinito e -1

     E) 0 ed 1

 

14. Quante cifre ha il numero 2900 nella rappresentazione decimale (si tenga conto che il log102 = 0,301...)?

     A) 101

     B) 271

     C) 252

     D) Nessuno dei numeri precedenti

     E) 902

 

15. Date le seguenti quantità: 0,8; -1/3; 11/7; -0,2; 7/11, qual è il valore della differenza fra il maggiore ed il minore?

     A) 69/7

     B) 1,70

     C) 124/70

     D) 40/21

     E) 26/21

 

16. Il 3% di una certa somma ammonta a 60.000. Allora l'intera somma ammonta a lire:

     A) 200.000

     B) 50.000

     C) 1.930.000

     D) 2.000.000

     E) 7.000.000

 

17. -2-3 =

     A) 8

     B) 6

     C) -0,125

     D) 0,125

     E) 2/3

 

18. Quanti sono i divisori (con resto nullo) del numero 100, 1 e 100 compresi?

     A) 2

     B) 4

     C) 6

     D) 9

     E) 16

 

19. Un animale ha una massa M1 = 40 kg; dopo 4 mesi, la sua massa, che indichiamo ora con M2, è aumentata del 25% rispetto a M1. Dopo altri quattro mesi, la sua massa, che indichiamo ora con M3 è aumentata del 20% rispetto a M2; dopo un ulteriore aumento del 10% rispetto a 3M, la massa finale M4 è:

     A) 70 kg

     B) 66 kg

     C) 60 kg

     D) 58 kg

     E) 56 kg

 

20. Il logaritmo decimale di 99,99 è:

     A) minore di 0

     B) minore di 1

     C) minore di 2

     D) uguale circa a 100

     E) maggiore di 2

 

21. log2 16 =

     A) 4

     B) 8

     C) 32

     D) 162

     E) 216

 

22. log10 - 100 è:

     A) = 2

     B) = -2

     C) = 10

     D) non definito

     E) = -10

   

23. Una frazione con numeratore e denominatore interi è:

     A) irriducibile se numeratore e denominatore hanno il massimo comun divisore maggiore di uno

     B) apparente se il denominatore è multiplo del numeratore

     C) impropria se il numeratore è minore del denominatore

     D) ridotta ai minimi termini se numeratore e denominatore sono primi tra di loro

     E) uguale ad un numero irrazionale

 

24. Le radici quadrate della somma dei quadrati di due numeri razionali negativi:

     A) sono sempre numeri complessi

     B) sono sempre numeri positivi

     C) sono sempre numeri negativi

     D) sono sempre numeri razionali

     E) non soddisfano le condizioni delle precedenti risposte

 

25. Qual è la centesima parte di 1012?

     A) 1010

     B) 10-10

     C) 106

     D) 1012/100

     E) 100-12

 

26. Una cellula si divide regolarmente in due nuove cellule in ogni unità di tempo T. Quante cellule troveremo dopo un lasso di tempo = 5T?

     A) 13

     B) 16

     C) 32

     D) 63

     E) 10

 

27. 10-3 + 10-5=

     A) = 10-8

     B) > 10-3

     C) < 10-3

     D) = 2 . 10-3

     E) = 10-2

28. Una città ha inizialmente una popolazione di 360000 abitanti. Questa aumenta, dapprima, di 2/3; il nuovo numero aumenta, poi, del 50%; quanti sono gli abitanti, dopo questi aumenti?

     A) 2.000.000

     B) 1.350.000

     C) 900.000

     D) 600.000

     E) 540.000

 

29. log10 100 + log10 10 + log10 1 + log10 0,1 =

     A) log10 111,1

     B) 4,1

     C) 2

     D) 2,2

     E) 2,9

 

30. A è un numero reale; quanti valori reali di Y soddisfano alla relazione Y = radice quadrata di A?

     A) Uno

     B) Due

     C) Nessuno

     D) Infiniti

     E) Dipende dal valore di A

 

31. 413 + 413=

     A) 813

     B) 2 . 413

     C) 414

     D) 426

     E) 826

 

32. Se è logn 11 = 0,5 il valore di n è:

     A) 2,1

     B) 2,7183...

     C) 5,5

     D) 10

     E) 121

   

33. La popolazione italiana è di circa 57 milioni di persone, delle quali circa il 30% ha meno di vent'anni. Assumendo che i maschi e le femmine siano egualmente numerosi in questa fascia di età, quante sono le donne con meno di vent'anni?

     A) 7.550.000

     B) 8.550.000

     C) 755.000

     D) 855.000

     E) Meno di 8.000.000

 

34. 1 + 272/3 =

     A) 4

     B) 7

     C) 19

     D) 6

     E) 10

 

35. La radice cubica reale di 33 è:

     A) 9

     B) 1

     C) 3

     D) -3

     E) 18

 

36. All'aumentare della base b > 1, la funzione logb3:

     A) resta costante

     B) cresce

     C) decresce

     D) non esiste

     E) oscilla tra 0 -1 e +1

 

37. L'espressione  vale:

     A) 24/3

     B) 23/4

     C) 12 

     D) 2 

     E) 4 

   

38. Per a = 10-1 . 54 e b = 53 . 20 . 7-1, a/b =

     A) 0

     B) 3,5

     C) 7,0

     D) 5/70

     E) un numero diverso da quelli delle precedenti risposte

 

39. 103 . 105=

     A) 108

     B) 102

     C) 0,5

     D) 0,01

     E) 1015

 

40. log10 10-1/5 =

     A) -1/5

     B) 5

     C) -5

     D) 1/5

     E) -5/10

 

41. In un esame, 16 studenti sono stati respinti e il 90% è stato promosso. Quanti studenti si sono presentati all'esame?

     A) 160

     B) 116

     C) 84

     D) 190

     E) 144

 

42. Riordinare in ordine crescente le quantità     a = -1/4; b = -1/3; c = 0

     A) a, b, c

     B) b, a, c

     C) c, b, a

     D) c, a, b

     E) b, c, a

   

43. Quale numero in base 10 corrisponde al numero 20 in base 16?

     A) 320

     B) 8

     C) 10

     D) 32

     E) 36

 

44. Se N è un numero negativo, le radici quadrate di -N sono numeri:

     A) uno reale e uno immaginario

     B) entrambi reali, uno positivo e uno negativo

     C) entrambi immaginari

     D) entrambi reali e negativi

     E) entrambi reali e positivi

 

45. [(1014 . (103)-5]/(10-3 . 102)

     A) 10-5

     B) 10

     C) 1

     D) 10-1

     E) 1013

46. Delle risposte date a un questionario, 8 sono sbagliate e l'80% sono esatte. Quante risposte sono state date?

     A) 88

     B) 72

     C) 48

     D) 40

     E) 32

 

47. Quanto vale 45.0003 . () . 250.000?

     A) 81 . 104

     B) 81 . 105

     C) 81 . 106

     D) 81 . 107

     E) 8,1 . 106

   

48. In Italia, in un certo anno, 824 persone di sesso maschile si sono ammalate di AIDS. Sapendo che esse costituiscono l'80% del totale di coloro che si sono ammalati di AIDS, questi ultimi sono:

     A) 890

     B) 989

     C) 1030

     D) 1483

     E) 65.920

 

49. Uno studente ha sostenuto N esami. Se ne avesse sostenuti il triplo, ne avrebbe 6 in meno di un suo amico, che ne ha sostenuti 18. Quanto vale N?

     A) 2

     B) 4

     C) 6

     D) 8

     E) 9

 

50. 5 + 1/2 + 1/3 =

     A) 7/6

     B) 35/6

     C) 27/6

     D) 30/5

     E) 7/5

 

51. Il 12% di 2.500.000 è:

     A) 30%

     B) 30.000

     C) 300.000

     D) 3.000.000

     E) 2.500.000/12

 

52. La disuguaglianza log -7 < log -3:

     A) è vera

     B) è vera mettendo > al posto di <

     C) è vera cambiando il segno che precede il numero 7

     D) è vera cambiando il segno che precede il numero 3

     E) nessuna delle precedenti risposte è corretta

   

53. Qual è il risultato della seguente espressione: 0,00008/0,4?

     A) 0,0002

     B) 0,2

     C) 0,000002

     D) 2,0

     E) 20

 

54. 2,5 . 10-4 + 5 . 10-5 =

     A) 0,3 . 10-3

     B) 30 . 10-3

     C) 2,55 . 10-4

     D) 7,5 . 10-4

     E) 5

55. (1 . 100) + (2 . 101) + (5 . 103) =

     A) 5021

     B) 521

     C) 5020

     D) 125

     E) 1205

 

56. 103 . 10-2 =

     A) 10

     B) 9 . 102

     C) 9 . 10

     D) 10-3/2

     E) un numero diverso da quelli delle precedenti risposte

 

57. Nell'insieme dei numeri razionali relativi, 641/2 =

     A) +8; -8

     B) +32; -32

     C) +1/642; -1/642

     D) +1/64; -1/64

     E) +1/128; -1/128

   

58. 150 =

     A) 15

     B) 0

     C) -15

     D) 1

     E) 1/15

 

59. -3 . 10-3 =

     A) 3

     B) -3

     C) -0,0003

     D) -0,003

     E) 0,003

 

60. I possibili resti della divisione di un numero per 10 sono:

     A) tutti i numeri naturali < 10

     B) tutti i numeri naturali > 10

     C) qualsiasi numero naturale

     D) tutti i numeri naturali < 9

     E) tutti i numeri reali < 10

 

61. log10 2 567 010 000 000 è un numero compreso fra:

     A) 0 e 1

     B) 10 e 11

     C) 12 e 13

     D) 25 e 26

     E) 11 e 12

 

62. Quanto vale il logaritmo decimale di 5000, n.b.: il logaritmo naturale di 5 è 1,609 e quello di 10 è 2,303?

     (N.B. non occorrono tavole o strumenti di calcolo)

     A) 4,609

     B) 3,699

     C) 5,699

     D) 2,699

     E) 2,609

 

63. Lo 0,2 per mille di un numero è 0,4. Il numero x è uguale a:

     A) 1000

     B) 2000

     C) 4000

     D) 8000

     E) 16.000

 

64. Se i primi tre termini di una progressione geometrica sono 1, 3, 9, qual è l'ottavo termine?

     A) 81

     B) 243

     C) 729

     D) 2187

     E) 6561

 

65. La quantità 57.614.000 può venire scritta:

     A) 1000 . (57 + 614)

     B) 1000 . (57 . 614)

     C) 57 . 106 + 614 . 1000 + 1000

     D) 57 . 106 + 614 . 1000 + 0

     E) 576 . 106 + 14.000

 

66. 105 . 10-3 =

     A) 102

     B) 108

     C) 1000

     D) 10-5/3

     E) un numero diverso da quelli delle precedenti risposte

 

67. In una comunità di 5000 persone il 5% dei membri viene colpito da una malattia infettiva, che richiede il ricovero nel 50% dei casi; quanti ricoveri sono avvenuti?

     A) 50

     B) 100

     C) 125

     D) 150

     E) 20

   

68. In condizioni normali il flusso urinario è, in media, 1 millilitro al minuto. Pertanto, il flusso urinario giornaliero, in litri, corrisponde a circa:

 

     A) 4

     B) 0,4

     C) 0,7

     D) 0,9

     E) 1,4

 

69. Dividere un numero per 0,05 è come moltiplicarlo per:

     A) 2

     B) 5

     C) 20

     D) 50

     E) 200

 

70. 10-3/109 =

     A) 10-12

     B) 10-6

     C) 6

     D) 106

     E) 1012

 

71. La quantità (a + b)3 è uguale a:

     A) a3 + b3

     B) a3 - b3

     C) a3 + 3ab + b3

     D) (a + b) . (a + b)2

     E) a3 + b3 - 3ab

 

72. Si può eseguire l'addizione dei numeri 1/100 e 10-7?

     A) Sì e il risultato è compreso fra 100 e 1000

     B) Sì e il risultato è compreso fra 0,01 e 0,1

     C) Sì e il risultato è compreso fra 0,0000001 e 0,000001

     D) No

     E) Sì e il risultato è compreso fra 0,1 e 1

73. La metà di 106 è:

     A) 103

     B) 0,2 . 106

     C) 5 . 105

     D) 56

     E) 53

 

74. Il log2 n = 6. Il valore di n risulta:

     A) 104

     B) 12

     C) 64

     D) 62

     E) 3

 

75. log2 7 + log2 3 =

     A) log2 21

     B) log2 10

     C) 27 + 23

     D) log2 7/3

     E) nessuno dei numeri delle risposte precedenti

 

76. (1/8 + 8-1)/(0,025 . 102)

     A) 100

     B) 88

     C) 25

     D) 1

     E) 0,1

 

77. Un'infermiera deve numerare 238 provette progressivamente (da 1 a 238) con etichette numerate da 0 a 9. Quante etichette dovrà utilizzare per portare a termine il lavoro affidatole?

     A) 3

     B) 238

     C) 606

     D) 605

     E) Un numero diverso dai precedenti

   

78. Quanto vale l'espressione 38/94?

     A) 1/3

     B) 1

     C) 3

     D) 2

     E) 3/4

 

79. L'espressione: 5 . 100 + 5 . 101 + 2 . 102 + 3 . 103 vale:

     A) 3200

     B) 3250

     C) 5523

     D) 3255

     E) 15 . 106

 

80. Una popolazione, che è inizialmente di 32 batteri, aumenta del 50% ogni ora. Di quanti batteri sarà dopo 4 ore?

     A) 100

     B) 112

     C) 128

     D) 162

     E) 200

 

81. 1 . 21 + 1 . 23 + 1 . 24 =

     A) 3

     B) 7

     C) 10

     D) 18

     E) 26

 

82. Quanto vale l'espressione 1/2 - 1/3 - 1/4 ?

     A) -1/12

     B) 1/12

     C) 1/6

     D) -1/6

     E) -1/9

   

83. 1/2 . 108 =

     A) 104

     B) 0,2 . 108

     C) 58

     D) 0,5 . 107

     E) 5 . 107

 

84. Dieci elevato alla terza diviso dieci elevato a meno tre è uguale a:

     A) un milione

     B) zero

     C) uno

     D) dieci

     E) nove

 

85. Quale delle seguenti quaterne dà l'ordine crescente dei quattro numeri  x = 10-2; y = -102;   z = 1/10-3; t = -10-4?

     A) z, x, y, t

     B) t, z, x, y

     C) y, t, x, z

     D) t, z, y, x

     E) x, t, y, z

 

86. Date le seguenti quantità: 4/14; -ln 1; -2-2; 14/4, quale è il valore esatto della differenza fra il maggiore ed il minore?

     A) 45/14

     B) 2,718

     C) 3,75

     D) 3,50

     E) 13/4

 

87. 1 . 101 + 2 . 102 + 4 . 104 =

     A) 402010

     B) 40210

     C) 4210

     D) 421

     E) 42,01

   

88. Un contadino alleva polli e conigli. Se possiede 55 capi che hanno complessivamente 160 zampe quanti sono i conigli?

     A) 30

     B) 25

     C) 20

     D) 15

     E) Nessuno dei valori precedenti

 

89. 4 . 10-2 =

     A) 0,4

     B) 400

     C) 0,04

     D) 40

     E) nessuno dei numeri delle risposte precedenti

 

90. L'espressione  vale:

     A) 0

     B) -2

     C) 2

     D) -2,828426

     E) l'espressione non ha significato nel campo dei numeri reali

 

91. (log10 10-4)/(10-2 . 0,1)

     A) -4000

     B) 1

     C) -1

     D) -10

     E) -2

 

92. Un ospedale di 500 letti ha un numero di degenti pari al 60% dei dipendenti presenti in un certo giorno; nel giorno considerato, è presente un dipendente ogni 2 letti. Quante sono in totale le persone presenti in ospedale quel giorno?

     A) 560

     B) 310

     C) 150

     D) 600

     E) 400

 

93. log10 4 + log10 25 =

     A) 0,40

     B) 2

     C) 6,25

     D) 29

     E) 250

 

94. Quale dei seguenti numeri è più vicino al log2 15?

     A) 15

     B) 5

     C) 2

     D) 4

     E) 7,5

 

95. log3 81 =

     A) 27

     B) 4

     C) 381

     D) 813

     E) 1/27

 

96. Il micro è un prefisso che indica un sottomultiplo dell'unità pari a:

     A) un centesimo

     B) un milionesimo

     C) un decimo

     D) un miliardesimo

     E) un millesimo

 

97. I risultati delle seguenti operazioni      103 + 103, 101 - 10-1, 103 . 103, 103 . 10-3 sono:

     A) 106; 9,9; 109; 10-9

     B) 106; 1; 106; 1

     C) 0,2 . 104; 9,9; 106; 1

     D) 0,2 . 104; 0; 109; 10-9

     E) 2 . 104; 9, 9; 109; 10-9

   

98. La radice quadrata di un numero F positivo minore di 1 è:

     A) < F

     B) > F

     C) < 1

     D) negativa

     E) un numero complesso

 

99.

     A) 20

     B) 100

     C) 2

     D) non ha senso

     E) 1

 

100. Ricordando che log 2 = 0,3 allora:

     A) log 50 = 2,7

     B) log 200 = 2,3

     C) log 0,02 = -2,3

     D) log 0,5 = -1,7

     E) log 80 = 1,6

 

101. La somma di tre aree è 1600. La prima è il 20% della seconda e la seconda è il 50% della terza. Le tre aree misurano:

     A) 200; 400; 1000

     B) 200; 500; 900

     C) 100; 510; 990

     D) 300; 400; 800

     E) nessuna delle risposte precedenti

 

102. Un tale compra un oggetto a 2000 lire e lo vende a 2500 lire; lo ricompra a 3000 lire e lo rivende a 3500 lire. Quante lire guadagna?

     A) 0

     B) 500

     C) 1000

     D) 1500

     E) 2000

   

103. Qual è il numero successivo nella seguente successione: 90; 85; 75; 60; 40?

     A) 30

     B) 27

     C) 25

     D) 22

     E) 15

 

104. Se log10 5 = 0,69897, log10 50 vale:

     A) 6,98970

     B) 0,06988

     C) 1,69897

     D) 5,69897

     E) non esistono dati sufficienti per il calcolo

 

105. Quanto vale la radice cubica reale di -125?

     A) 1/3

     B) 5

     C) -5

     D) 5/3

     E) 3/5

 

106. Semplificando (23)2/3; (a9)2/3; (c5/2)2/3 si ottiene:

     A) -4; a(10-1/3); c2/3

     B) 22; a6; c5/3

     C) (1/4); a(9+2/3); c3/2

     D) 22; a2/3; c5/3

     E) 2-4/3; a11/3; c11/6

 

107. Quale relazione algebrica sussiste tra log0,5 16 e log8 2?

     A) Nessuna

     B) Log0,5 16 > Log8 2

     C) Log0,5 16 = Log8 2

     D) Log0,5 16 < Log8 2

     E) Log0,5 16 minore o uguale a Log8 2

   

108. Il valore di (10-3 . 106)/103 è:

     A) 1012

     B) 10-3

     C) 103

     D) 1

     E) 10

 

109. A quanto ammonta il valore del logaritmo decimale di 0,01?

     A) -2

     B) 100

     C) +2

     D) -1

     E) Non esiste alcun valore

 

110. Il prodotto 866 . 648 è uguale a:

     A) 882

     B) 808

     C) 7272

     D) 6436

     E) 51264

 

111. Un paziente si sottopone a terapia che prevede l'assunzione di un farmaco con dose giornaliera decrescente del 7,5%. Se il 1° giorno la dose è un grammo, quale sarà quella del 21° giorno?

     A) 1 - 21 . 0,925

     B) 0,92520

     C) 0,92521

     D) 1 - 20 . 0,925

     E) 1 - 0,92521

 

112. Il valore della potenza di un numero n (n diverso da 0) elevato a 0 è pari a:

     A) n

     B) 0

     C) 1

     D) non esiste dato che è una forma indeterminata

     E) n - 1

   

113. loge e =

     A) -e

     B) 0,1

     C) -1

     D) 1

     E) e

 

114. Un padre ha 50 anni e il figlio 26. Quando l'età del padre è tripla di quella del figlio?

     A) Mai

     B) 14 anni fa

     C) Fra 14 anni

     D) Non è possibile stabilirlo

     E) Quando il padre avrà 78 anni

 

115. Il log 1 è uguale a:

     A) 0

     B) infinito

     C) 1

     D) -1

     E) non esiste

 

116. Il quoziente di due potenze della stessa base è uguale ad una potenza che ha:

     A) per base il quoziente delle basi e per esponente il quoziente degli esponenti

     B) per base la stessa base e per esponente il quoziente degli esponenti

     C) per base la stessa base e per esponente la differenza degli esponenti

     D) per base la differenza delle basi e per esponente la differenza degli esponenti

     E) per base la stessa base e per esponente il reciproco degli esponenti

 

117. L'espressione: 0/(104 . 10-6) vale:

     A) 0

     B) infinito

     C) 102

     D) 10-2

     E) 10-10

   

118. 24 . 46 =

     A) 210

     B) 216

     C) 410

     D) 64

     E) 810

 

119. Il valore di (0,000064)-1/3 è:

     A) 0,25

     B) 1000/8

     C) 0,008

     D) 25

     E) 250

 

120. Nella relazione 1/p + 1/q = 1/r si ponga p = 3 e q = 5. Risulta r = :

     A) 8

     B) 15

     C) 15/8

     D) 8/15

     E) 1/8

 

121. Siano a e b due numeri reali positivi con a > b, il log10(b/a) è:

     A) < 0

     B) > 1

     C) > 0 e < 1

     D) dipende dai valori di a e b

     E) non esiste

 

122. La somma dei due numeri interi consecutivi è 169. La loro differenza (in valore assoluto) è:

     A) 1

     B) 12,5

     C) 2

     D) > 13

     E) indeterminabile

   

123. Si consideri un numero positivo x; lo si incrementi del 18% e si riduca successivamente il risultato del 18%; chiamando y il numero così ottenuto:

     A) x > y

     B) x = y

     C) x < y

     D) x minore o uguale a y

     E) x > y se x > 1 x < y se x < 1

 

124. Il valore iniziale di una grandezza che a seguito dell'incremento del 20%  ha assunto il valore di 2160, era:

     A) 1800

     B) 1720

     C) 1500

     D) 1850

     E) 2140

 

125. Per c diverso da 0, è (12c - 2b)/2c =

     A) 6c - b/c

     B) 6 - 2b

     C) (6 - 2b)/c

     D) 6 - b/c

     E) 12c - b/c

 

126. La somma di 3 numeri ciascuno elevato a zero è:

     A) una quantità negativa

     B) una quantità positiva

     C) una quantità che può essere positiva e negativa a seconda del valore assoluto dei numeri

     D) zero

     E) i dati del quesito sono insufficienti a dare una risposta univoca

 

127. L'espressione 10x per x = 4 vale:

     A) 40.000

     B) 40

     C) 0,4

     D) 10.000

     E) 9/10.000

   

128. Avendo presente che: "qualunque numero N diverso da 0 elevato a 0 è uguale a 1", (N0 = 1), se si considera 2 come base dei logaritmi, quanto vale il logaritmo di 1?

     A) 2

     B) 1

     C) 0

     D) 10

     E) 100

 

129. Moltiplicando due numeri positivi minori di 1 si ottiene sempre:

     A) un numero maggiore del minore dei due

     B) un numero maggiore del maggiore dei due

     C) un numero maggiore od almeno uguale a 1

     D) l'inverso della somma dei due

     E) un numero minore del minore dei due

 

130. La somma dei primi n numeri dispari è:

     A) 2n - 1

     B) (n - 1)2

     C) n2

     D) (n/2n) . 2

     E) nessuna delle soluzioni proposte

 

131. Dati i numeri a positivo e b negativo, la somma dei loro quadrati è:

     A) minore del quadrato della somma

     B) uguale al quadrato della somma

     C) maggiore del quadrato della somma

     D) minore di (a + b)

     E) dipende dai numeri

 

132. Posto A = 0,005367 - 0,005924, risulta:

     A) -10-4 < A < -10-3

     B) -10-3 < A < -10-4

     C) 10-4 < A < 10-3

     D) 10-3 < A < 10-4

     E) -10-4 < A < -10-5

   

133. Se loga 17 = 3, allora:

     A) 31/17 = a

     B) a3 = 17

     C) a17 = 3

     D) 173 = a

     E) 17-3 = a

 

134. Dati i numeri 1; 2; 3; 4; 5, la somma dei loro quadrati ed il quadrato della loro somma sono rispettivamente:

     A) 55 e 225

     B) 55 e 55

     C) 225 e 225

     D) 25 e 125

     E) 15 e 325

 

135. I numeri reali costituiscono l'insieme dei numeri:

     A) naturali e razionali

     B) interi e frazionari

     C) razionali ed irrazionali

     D) razionali e decimali

     E) razionali e complessi

 

136. In una progressione geometrica il primo elemento è 2 e il sesto è 0,0625. Il quinto valore della progressione è:

     A) 0,125

     B) 0,0125

     C) 0,5

     D) 0,05

     E) nessuno dei valori proposti nelle altre risposte è corretto

 

137. Un mattone pesa un chilo più mezzo mattone. Quanto pesa un mattone?

     A) kg 1,5

     B) kg 2

     C) kg 1

     D) kg 1,75

     E) kg 3

   

138. Se a = b, b < c, c = 1/2 d, allora:

     A) a > d

     B) a < d

     C) a = d

     D) b > d

     E) b = 2d

 

139. Se indichiamo con P il prodotto 0,018 . 0,0375 risulta:

     A) 10-5 < P < 10-4

     B) 10-4 < P < 10-3

     C) 10-3 < P < 10-2

     D) 10-2 < P < 10-1

     E) P < 10-5

 

140. Se c3/2 = 27, c è uguale a:

     A) 6

     B) 9

     C) 18

     D) 81

     E) 40,5

 

141. Il valore arrotondato della terza cifra decimale del numero 0,7836 è:

     A) 0,784

     B) 0,780

     C) 0,800

     D) 0,783

     E) 0,790

 

142. Il 1° gennaio 1995 cade di domenica. Tenuto conto anche della presenza di eventuali anni bisestili, il primo 1° gennaio 2000 cadrà di:

     A) lunedì

     B) martedì

     C) venerdì

     D) sabato

     E) domenica

   

143. Il valore di (33/2 + 31/3)2 - 27 - 32/3 è pari a:

     A) 2 . 310/6

     B) 2 . 311/6

     C) 2 . 33/2

     D) 2 . 34/5

     E) 2 . 32/3

 

144. Calcolare il valore dell'espressione (2-3) + (4-5) . (6-8):

     A) 0

     B) 1

     C) -1

     D) 2

     E) -2

 

145. La media geometrica di 16 e 36 è:

     A) 28

     B) 26

     C) 24

     D) 20

     E) 22

 

146. 0,0076 è uguale a:

     A) 76/100

     B) 76 . 100

     C) 76/10.000

     D) 76/100.000

     E) 76/1000

 

147. Il 3,5% di una certa somma K ammonta a 70.000 Lire. Allora l'intera somma K ammonta a:

     A) 200.000 lire

     B) 500.000 lire

     C) 1.930.000 lire

     D) 2.000.000 lire

     E) 7.000.000 lire

   

148. È possibile suddividere la popolazione umana in quattro gruppi sulla base di due specificità antigeniche (A e B). Alcuni individui presentano la specificità A (gruppo A), altri la specificità B (gruppo B), altri entrambe (gruppo AB), ed infine vi sono individui in cui non è espressa né l'una né l'altra specificità (gruppo 0). In uno studio sui gruppi sanguigni AB0 condotto su 6000 cinesi, 2527 avevano l'antigene A e 2234 l'antigene B, 1846 nessun antigene. Quanti individui avevano entrambi gli antigeni?

     A) Non si può rispondere

     B) 293

     C) 4154

     D) 4761

     E) 607

 

149. Il prezzo nominale di un televisore è 750.000. Un commerciante lo vende a 600.000. Lo sconto praticato sul prezzo nominale è:

     A) 15%

     B) 20%

     C) 25%

     D) 12,5%

     E) 80%

 

150. La somma di tre numeri è 1000. Il primo è due terzi del secondo e il secondo è tre quinti del terzo. I tre numeri sono:

     A) 200; 300; 500

     B) 200; 200; 600

     C) 200; 400; 400

     D) 500; 200; 300

     E) 150; 300; 450

 

151. 1/200 + 1/200 =

     A) 1/400

     B) 1/200

     C) 1/100

     D) 2/100

     E) 1/40.000

 

152. L'espressione 109 + 108 + 108 + 109 è uguale a:

     A) 1034

     B) 4034

     C) duemilioniduecentomila

     D) duemiliardiduecentomilioni

     E) 209 + 208

   

 

 

 

153. Due grandezze si dicono omogenee se:

     A) sono divisibili per uno stesso numero

     B) si possono sommare

     C) si possono moltiplicare

     D) si possono dividere

     E) nessuna delle risposte è corretta

 

154. La differenza x5 - x3 vale:

     A) x2

     B) x5/3

     C) x2(x3- 1)

     D) x3(x2-1)

     E) x3/5

 

155. I valori delle seguenti potenze:       2-2, (1/3)-3, (-4)-4 sono rispettivamente:

     A) 4, 27, impossibile

     B) -1/4, 1/27, 128

     C) 1/4, 27, impossibile

     D) 1/4, impossibile, 1/128

     E) nessuna delle precedenti è corretta

 

156. Quale delle seguenti affermazioni è ERRATA: se due numeri sono:

     A) primi tra loro, il M.C.D. è il loro quoziente

     B) primi tra loro, il m.c.m. è il loro prodotto

     C) uno multiplo dell'altro, il più grande è il m.c.m.

     D) uno multiplo dell'altro, il più piccolo è il M.C.D.

     E) primi tra loro, il M.C.D. = 1

 

157. Impiegando un certo capitale ad un certo tasso di interesse annuo, dopo il primo anno si ottiene un interesse di 40.000 lire e dopo il secondo, avendo capitalizzato la rendita, un interesse di 42.000 lire. Quale era il capitale iniziale?

     A) 1.000.000

     B) 800.000

     C) 400.000

     D) 420.000

     E) 1.612.000

   

158. Un canottiere risale un tratto di fiume vogando con ritmo costante. Egli passa sotto due ponti che distano 1 km. Mentre transita sotto il secondo ponte, senza avvedersene lascia cadere in acqua il cappello. Prosegue vogando per 10 minuti quando, resosi conto dell'accaduto, inverte la rotta e, vogando sempre allo stesso ritmo, riprende il cappello proprio mentre transita sotto il primo ponte. A quale velocità scorre l'acqua del fiume in quel tratto?

     A) < 3 km/ora

     B) > 3 km/ora

     C) 3 km/ora

     D) 6 km/ora

     E) Nessuna delle precedenti risposte

 

159. Una popolazione di dimensione iniziale W aumenta in modo costante con un tasso del 10% al giorno. Dopo 7 giorni la dimensione della popolazione è:

     A) W (1 + 0,07)

     B) W (1 + 0,1)7

     C) (W + 0,01W)7

     D) W + W/7

     E) W . 0,07

 

160. Un numero è sempre divisibile per 4 se:

     A) la somma delle sue cifre è divisibile per 4

     B) il numero formato dalle sue due prime cifre è divisibile per 4

     C) la sua ultima cifra è pari

     D) il numero formato dalle sue due ultime cifre è divisibile per 4

     E) la sua ultima cifra è 4 oppure 8

 

 

 

 

161. Se il logaritmo in base 9 di x = -3 allora:

     A) l'equazione non ha senso perché la base è maggiore di 1

     B) x = 1/3

     C) l'equazione non ha senso perché il valore di un logaritmo non può mai essere negativo

     D) x = 1/729

     E) x = 729

 

162. Il minimo comune multiplo di 2, 4, 5, 8 è:

     A) 20

     B) 40

     C) 80

     D) 320

     E) 19

   

163. La somma, la differenza e il prodotto di due numeri stanno tra loro come 7, 3 e 40. Quali sono questi due numeri?

     A) 15 e 6

     B) 2 e 5

     C) 4 e 10

     D) 20 e 8

     E) 15 e 30

 

164. Quanto vale l'espressione: 105 moltiplicato per 10-3?

     A) 10 . 10

     B) 108

     C) 1000

     D) 10-15

     E) Nessuna delle risposte

 

165. Quanti sono i NUMERI PRIMI tra 2 e 11 (2 e 11 compresi, se primi)?

     A) 6

     B) 5

     C) 4

     D) Nessuno

     E) Tutti

 

166. Una successione di numeri tutti uguali fra di loro costituisce:

     A) solo una progressione aritmetica

     B) solo una progressione geometrica

     C) sia una progressione aritmetica che una progressione geometrica

     D) solo una sequenza di numeri

     E) nessuna delle altre risposte

 

167. Considerando i numeri del tipo 4 . n + 3, con n intero, calcolare il numero di quelli compresi fra 240 e 1460:

     A) 307

     B) 308

     C) 306

     D) 304

     E) 305

   

168. Il valore di 35 : 3 è uguale a:

     A) 34

     B) 36

     C) 3-5

     D) 35

     E) 1/5

 

169. Quanto valgono le parti intere dei logaritmi decimali dei numeri: 800; 80; 8; 82?

     A) +2     +1       0     +1

     B) +2     +1     +1     +2

     C) +2     +1       0       0

     D) +2     +1       0     +2

     E) +3     +2     +1     +2

 

 

170. Una potenza di base diversa da 0 e con esponente uguale a 0 vale:

     A) 1

     B) 0

     C) 1 se l'esponente è pari, - 1 se l'esponente è dispari

     D) infinito

     E) non ammette soluzioni

 

171. Un numero intero tale che la differenza tra il suo quadrato e i 3/2 del numero stesso sia uguale a 52 è:

     A) 8

     B) 15

     C) -13/2

     D) non esiste alcun numero intero che soddisfa la relazione

     E) nessuna delle altre 4 risposte

 

172. Se a = 5b e b = 2c qual è la misura di c rispetto ad a?

     A) 10

     B) 1/10

     C) 2/5

     D) 5/2

     E) 7

   

173. Il minimo comune multiplo tra due numeri è 36 ed il loro massimo comun divisore è 6; i due numeri sono:

     A) 6 e 12

     B) 24 e 36

     C) 12 e 18

     D) 6 e 18

     E) 12 e 24

 

174. La somma di 200 numeri naturali consecutivi, di cui il primo è 200, è pari a:

     A) 79800

     B) 59900

     C) 60000

     D) 60100

     E) 60200

 

175. Il valore di (100 - 4)2 è:

     A) (12 . 8)2

     B) 10000 + 16 + 400

     C) 1000 + 16 - 400

     D) (100 + 4) . (100 - 4)

     E) (10 + 2) . (10 - 2)

 

176. 10-3 è uguale a:

     A) 1/1000

     B) - 3/10

     C) 3/10

     D) 3/100

     E) 7/10

 

177. (161/2)1/6 è uguale a:

     A) 21/2

     B) 41/2

     C) 21/3

     D) 41/3

     E) 416/3

   

178. Il valore di (500 - 1)2 è pari a:

     A) 25 . 104 - 499

     B) 25 . 104 + 499

     C) 25 . 104 - 501

     D) 25 . 104 + 999

     E) 25 . 104 - 999

 

 

179. Calcolare la somma dei primi 100 numeri naturali:

     A) 100

     B) 10.000

     C) 5.050

     D) 4.950

     E) 5.000

 

180. Quale dei seguenti numeri NON è un numero primo?

     A) 5

     B) 31

     C) 27

     D) 13

     E) 51

 

181. Tra i primi 100 numeri naturali, sono contemporaneamente divisibili per: 2, 3, 4, 5:

     A) 0 numeri

     B) 1 numero

     C) 2 numeri

     D) non è possibile stabilirlo

     E) 3 numeri

 

182. Qual è l'incertezza in assoluto di una misura di 0,5 m con una precisione di 0,5% della misura stessa?

     A) ± 2,5 m

     B) ± 0,25 m

     C) ± 0,025 m

     D) ± 0,0025 m

     E) ± 0,00025 m

   

183. Apriamo, a caso, un vocabolario e osserviamo che la pagina di destra è la 111, poi solleviamo alcuni centimetri di fogli e, sempre a destra, leggiamo 777. Quanti fogli pari vi sono fra le due letture?

     A) 332

     B) 333

     C) 334

     D) 665

     E) 666

 

184. Quanti sono i termini di una progressione geometrica di ragione uguale a 2 con primo termine 4 ed ultimo 1024?

     A) 12

     B) 9

     C) 10

     D) 8

     E) Nessuno dei valori precedenti

 

185. (-5+12) + (6 - 7) - (3 - 4) =

     A) 7

     B) -7

     C) -4

     D) 4

     E) 9

 

186. Quale delle seguenti disuguaglianze è VERA?

     A) 10100      <     10010

     B) 10-100     <     100-10

     C) -10100     <     -10010

     D) -10100     <     10010

     E) 100-10     <     10-100

 

187. Centomila moltiplicato per un millesimo è uguale a:

     A) cento

     B) cento milioni

     C) un centomillesimo

     D) un centesimo

     E) un centomilionesimo

   

188. Il 4% del 20% di un numero è 1; qual è il numero?

     A) 80

     B) 24

     C) 125

     D) 16

     E) 20

 

189. Il grado di un polinomio corrisponde:

     A) alla somma dei gradi di tutti i monomi addendi

     B) al minimo comune multiplo dei gradi dei monomi addendi

     C) al grado del monomio di grado minimo

     D) al grado del monomio di grado massimo

     E) al numero dei fattori letterali diversi tra loro

 

190. Nella proporzione 5 : x = x : - 125 il valore del medio proporzionale:

     A) non esiste nel campo dei numeri reali

     B) è un numero irrazionale

     C) è uguale a 25

     D) è uguale a - 25

     E) è uguale a 1/25

 

191. 150 =

     A) 0

     B) 12

     C) -12

     D) 1

     E) 1/12

 

192. 53/5-3 =

     A) 0

     B) 25

     C) 1

     D) 5

     E) 15.625

   

193. Un millimetro cubo di sangue contiene circa 5 milioni di globuli rossi; un individuo adulto ha circa 5 litri di sangue; il numero totale dei globuli rossi dell'individuo in questione è circa:

     A) 25 . 109

     B) 2,5 . 1013

     C) 2,5 . 1015

     D) 2,5 . 1012

     E) 2,5 . 10-13

 

194. Il 3% di una certa somma ammonta a L. 60.000; il valore dell'intera somma è di lire:

     A) 200.000

     B) 2.000.000

     C) 180.000

     D) 1.800.000

     E) 200.000.000

 

195. Qual è la millesima parte di 1015?

     A) cento miliardi

     B) un centimiliardesimo

     C) mille miliardi

     D) 1015/100

     E) (3/1000)15

 

196. La somma di tre numeri, ciascuno elevato a zero:

     A) è negativa

     B) può essere positiva o negativa, a seconda dei valori dei tre numeri

     C) è positiva

     D) è zero

     E) è sempre uguale a 1

 

 

SOLUZIONI

 

 

1.A   2.A   3.D   4.B   5.A   6.D   7.C   8.B   9.B   10.B   11.A   12.C   13.C   14.B   15.D   16.D   17.C   18.D   19.B   20.C   21.A   22.D   23.D   24.E   25.A   26.C   27.B   28.C   29.C   30.E   31.B   32.E   33.B   34.E   35.C   36.C   37.A   38.B   39.A   40.A   41.A   42.B   43.D   44.B   45.C   46.D   47.D   48.C   49.B   50.B   51.C   52.E   53.A   54.A   55.A   56.A   57.A   58.D   59.D   60.A   61.C   62.B   63.B   64.D   65.D   66.A   67.C   68.E   69.C   70.A   71.D   72.B   73.C   74.C   75.A   76.E   77.C   78.B   79.D   80.D   81.E   82.A   83.E   84.A   85.C   86.C   87.B   88.B   89.C   90.E   91.A   92.E   93.B   94.D   95.B   96.B   97.C   98.B   99.B   100.B   101.E   102.C   103.E   104.C   105.C   106.B   107.D   108.D   109.A   110.A   111.B   112.C   113.D   114.B   115.A   116.C   117.A   118.B   119.D   120.C   121.A   122.A   123.A   124.A   125.D   126.B   127.D   128.C   129.E   130.C   131.C   132.B   133.B   134.A   135.C   136.A   137.B   138.B   139.B   140.B   141.A   142.D   143.B   144.B   145.C   146.C   147.D   148.E   149.B   150.A   151.C   152.D   153.B   154.D   155.E   156.A   157.B   158.A   159.B   160.D   161.D   162.B   163.D   164.A   165.B   166.C   167.E   168.A   169.A   170.A   171.A   172.B   173.C   174.B   175.A   176.A   177.C   178.E   179.C   180.C   181.B   182.D   183.B   184.B   185.A   186.B   187.A   188.C   189.D   190.A   191.D   192.E   193.B   194.B   195.C   196.C

Fonte: http://schiattarella.altervista.org/scuola/TEST/MATEMATICA/aritmetica.doc

Sito web da visitare: http://schiattarella.altervista.org

Autore del testo: non indicato nel documento di origine

Il testo è di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente i loro testi per finalità illustrative e didattiche. Se siete gli autori del testo e siete interessati a richiedere la rimozione del testo o l'inserimento di altre informazioni inviateci un e-mail dopo le opportune verifiche soddisferemo la vostra richiesta nel più breve tempo possibile.

 

Matematica quiz

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

Matematica quiz

 

"Ciò che sappiamo è una goccia, ciò che ignoriamo un oceano!" Isaac Newton. Essendo impossibile tenere a mente l'enorme quantità di informazioni, l'importante è sapere dove ritrovare l'informazione quando questa serve. U. Eco

www.riassuntini.com dove ritrovare l'informazione quando questa serve

 

Argomenti

Termini d' uso, cookies e privacy

Contatti

Cerca nel sito

 

 

Matematica quiz